Maths ; Physique-Chimie ; SVT
 
AccueilPortailFAQRechercherS'enregistrerMembresGroupesConnexion

Partagez | 
 

 barycentre

Voir le sujet précédent Voir le sujet suivant Aller en bas 
AuteurMessage
luneclaire
nouveau membre
nouveau membre


Nombre de messages : 4
Classe/Métier (si enseignant, précisez) : 1èreS
Date d'inscription : 30/04/2008

MessageSujet: barycentre   Mer 30 Avr - 3:19

bonjour tout le monde, voila je suis au CNED , et j'ai un exercice qui me pose problème, et il n'y a personne pour éclairer ma lanterne, un grand merci donc à ceux qui pourrons me donner des pistes car je ne sais vraiment pas comment m'en sortir.
On me dit :
A, B et C désignent 3 points non alignés
On appelle G le barycentre des points pondéres (A,1), (B,2), (C,3) et H le barycentre des points pondérés ( A,2), (B,3) et (C,1)
1/ construire ces points et montrer que G n'est pas égal à H
2/ En utilisant les points G et H , déterminer l'ensemble des points M tels que la valeur absolue de : vecteurMA+ 2vecteurMB+3vecteurMC soit égale à la valeur absolue de :2vecteurMA+3vecteurMB+MC
confused


Merci beaucoup d'avance
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Invité
Invité



MessageSujet: Re: barycentre   Mer 30 Avr - 16:02

Je vois, seulement, montre ton raisonnement.
Revenir en haut Aller en bas
maitre spoo
Animatheur
Animatheur


Masculin
Nombre de messages : 340
Age : 25
Classe/Métier (si enseignant, précisez) : Prepa ECS 1ere année
Localisation : 27
Loisirs : sports (dont capoeira), musique, sorties et compagnie!
Date d'inscription : 25/10/2006

MessageSujet: Re: barycentre   Mer 30 Avr - 18:49

Salut!

Bon voici les explications:

La proprieté fondamentale dis que pour tout point M du plan on a:

1MA+2MB+3MC= 6MG et 2MA+3MB+1MC=6MH c'est la base de ton exercice en fait. (toutes ces notations sont des vecteurs bien entendu)

Pour placer tes barycentres, tu remplace M par un point quelconque, ici le mieux est par A B ou C. Demonstration pour M=A:
Nous obtenons alors 1AA+2AB+3AC= 6AG
AA = vecteur nul d'où notre égalité equivaut a 2AB+3AC=6AG
soit AG= 2/6 AB + 3/6 AC = 1/3 AB + 1/2 AC

Tu procedes de la meme maniere pour placer H.

2) I 1MA+2MB+3MC I = I 2MA+3MB+1MC I
<=> (d'apres la propriété fondamentale) I MG I = I MH I

Donc M est la mediatrice de [GH]
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
luneclaire
nouveau membre
nouveau membre


Nombre de messages : 4
Classe/Métier (si enseignant, précisez) : 1èreS
Date d'inscription : 30/04/2008

MessageSujet: Re: barycentre   Mer 30 Avr - 22:20

oui merci beaucoup ( en fait pour le première question j'ai trouvé ensuite hihi mais pour la deuxième, je ne répond pas à la question posée si je met uste le rapport I MG I = I MH I en disant que M est la mediatrice de [GH] ou si ??
Encore un grand merci pour ton aide maitre spoo Smile
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
luneclaire
nouveau membre
nouveau membre


Nombre de messages : 4
Classe/Métier (si enseignant, précisez) : 1èreS
Date d'inscription : 30/04/2008

MessageSujet: Re: barycentre   Dim 4 Mai - 0:00

y a-t-il quelqun??
Revenir en haut Aller en bas
Voir le profil de l'utilisateur
Contenu sponsorisé




MessageSujet: Re: barycentre   Aujourd'hui à 3:44

Revenir en haut Aller en bas
 
barycentre
Voir le sujet précédent Voir le sujet suivant Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Re...Barycentre !
» ds pr 1sm(produit scalaire+barycentre+calcul tri)
» barycentre , intersection de deux droites
» un petit exercice sur le barycentre...
» barycentre avec 4 points pondérés

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum Des Maths :: Coin lycée... :: 1ère-
Sauter vers: