maxx nouveau membre
Nombre de messages : 3 Classe/Métier (si enseignant, précisez) : lycée 1ére. Date d'inscription : 03/01/2008
| Sujet: Dérivé en géométrie Jeu 3 Jan - 13:31 | |
| Bonjour, J'ai un exo de maths, ou je ne comprends rien, enfin pas grand chose :/ voici : ABCD est un carréde côté 10cm. Pour tout point M de [AB], on nomme I le point d'intersection de [DM] et [AC], x la longueur AM, et A( x) l'aire totale des deux triangles AMI e DIC. 1) Calculer 1(0) et A(10) 2) Montrer que si x 0, les triangles AMI et CDI sont semblables. 3) Soit h la hauteur issue de I dans le triangle AMI. Montrer que h/10- h = x/10 puis que h = 10 x/10+ x4) Montrer que A(x) = 5( x²+100)/ x+10 sur [0;10] 5) Etudier le sens de variation de A et en déduire la position de M assurant une aire totale minimaum. Merci d'avance. | |
|
maxx nouveau membre
Nombre de messages : 3 Classe/Métier (si enseignant, précisez) : lycée 1ére. Date d'inscription : 03/01/2008
| Sujet: Re: Dérivé en géométrie Ven 4 Jan - 4:04 | |
| Snif, vous avez pas une petite idée ? | |
|
Eximma Adminimatheur
Nombre de messages : 1933 Age : 34 Classe/Métier (si enseignant, précisez) : mp Localisation : St Nazaire (loire atlantique [44]) Mais Lorient en ce moment ^^ Loisirs : Plein de choseuhs Date d'inscription : 15/12/2005
| Sujet: Re: Dérivé en géométrie Ven 4 Jan - 17:10 | |
| Salut ! 1) 1(0) : c'est quoi, A(0) ? Si c'est le cas, alors on a le carré coupé en 2 triangles rectangles, donc l'aire c'est la moitié du carré, soit 50cm² A(10), x=10, donc en fait, ton carré est découpé en 4 triangles rectanges. Donc l'aire en jaune c'est la moitié de l'aire totale du carré, soit 10²/2 = 50 cm² 2) Je pense qu'ici il faut utiliser les angles alternes/internes et angle au centre. Tu as l'angle en I qui ne varie pas, on a aussi angle(BAI) = angle(ICD) (du moins en valeurs en degrés) et Idem pour D et M, donc les triangles sont semblables. Voilà déjà le début, je te laisse continuer | |
|
Contenu sponsorisé
| Sujet: Re: Dérivé en géométrie | |
| |
|