Forum Des Maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.



Maths ; Physique-Chimie ; SVT
 
AccueilPortailRechercherDernières imagesS'enregistrerConnexion
Le Deal du moment : -23%
(Black Friday) Apple watch Apple SE GPS 44mm ...
Voir le deal
199 €

 

 dérivées

Aller en bas 
2 participants
AuteurMessage
Mel 34
micro posteur
micro posteur
Mel 34


Nombre de messages : 14
Date d'inscription : 09/12/2006

dérivées Empty
MessageSujet: dérivées   dérivées Icon_minitimeMer 10 Jan - 21:01

Bonjour,
j'ai une fonction où je dois donner ça dérivées sauf que je n'y arrive pas.
f(x)= (x²+mx-2)/(x-m) donc il me faut ça dérivée tout en donnant la valeur de m. pour l'instant j'ai f'(x)=(-x²+2x-mx+2)/(x-m)² mais je crois que je me suis trompé dans mon calcul alors il faudra repartir du début pour vérifier parce que je trouve toujours ce résultat mais ça doit être faut. Et puis je ne sais pas comment je dois faire pour trouver m donc si quelqu'un peut m'expliquer après avoir corrigé ma fonction dérivée. Merci à ceux qui pourront m'aider. Idea
Revenir en haut Aller en bas
Shinichi
Adminimatheur
Adminimatheur
Shinichi


Masculin
Nombre de messages : 2038
Age : 37
Classe/Métier (si enseignant, précisez) : Maitrise informatique
Localisation : Québec
Loisirs : bcp de choses
Date d'inscription : 04/02/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeJeu 11 Jan - 2:15

Utilise la formule suivante :
soit u et v deux fonctions : la dérivée de u/v est (u'*v-u*v')/v² et non pas comme t'as fait.

Ensuite je veux bien t'aider à chercher m mais dis-moi ce que tu cherches ^^'
Revenir en haut Aller en bas
Mel 34
micro posteur
micro posteur
Mel 34


Nombre de messages : 14
Date d'inscription : 09/12/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeVen 12 Jan - 20:22

maintenant j'ai un autre problème parce que en fait l'énoncé est:
m est un réel. f est la fonction rationnelle définie par f(x) = (x²+mx-2)/(x-m) .
1) déterminer le domaine de définition de f.
2) etudier, suivant les valeurs du réel m, les variations de la fonction f.



Donc mon problème maintenant est que comme résultat j'ai trouvé f ' (x) = (x²-2mx+2m²)/(x-m)² mais je ne sais pas comment faire pour la question 2 parce que si m=0, il doit avoir f qui a un certain sens de variation puis si m <0 , f doit avoir un certain sens de variation et puis si m>0 , f a un certain sens de variation.
Mais comment je peut donner ces fameux sens de variation dans les trois cas, à partir de quoi je peut dire quel sens de variation elle a.

Merci pour l'aide que l'on me donnera.
Revenir en haut Aller en bas
Shinichi
Adminimatheur
Adminimatheur
Shinichi


Masculin
Nombre de messages : 2038
Age : 37
Classe/Métier (si enseignant, précisez) : Maitrise informatique
Localisation : Québec
Loisirs : bcp de choses
Date d'inscription : 04/02/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeSam 13 Jan - 5:48

le domaine de f c'est R privé de m puisque dans ce cas, le dénominateur est nul.
Quand on te demande de chercher le domaine d'une fonction, il faut en fait enlever les point ou le dénominateur de la fonction s'annule.

Je pense que ça veut dire, étudier la fonction f sur son domaine de définition en gardant m comme paramètre.
Revenir en haut Aller en bas
Mel 34
micro posteur
micro posteur
Mel 34


Nombre de messages : 14
Date d'inscription : 09/12/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeSam 13 Jan - 21:32

oui mais je fais comment pour savoir si f est croissante ou décroissante, à quel moment?
Revenir en haut Aller en bas
Shinichi
Adminimatheur
Adminimatheur
Shinichi


Masculin
Nombre de messages : 2038
Age : 37
Classe/Métier (si enseignant, précisez) : Maitrise informatique
Localisation : Québec
Loisirs : bcp de choses
Date d'inscription : 04/02/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeDim 14 Jan - 6:12

Voilà ce que j'ai fait :
dérivées Img1dd9.th
Revenir en haut Aller en bas
Mel 34
micro posteur
micro posteur
Mel 34


Nombre de messages : 14
Date d'inscription : 09/12/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeDim 14 Jan - 12:34

et pour quand m>0 ou <0 ça doit donner quoi? ce que tu as fait ça correspond aussi à m>0 et m<0 ou il y a d'autre calcul à faire? entrement ce que tu as fait, je l'ai compris. merci
Revenir en haut Aller en bas
Shinichi
Adminimatheur
Adminimatheur
Shinichi


Masculin
Nombre de messages : 2038
Age : 37
Classe/Métier (si enseignant, précisez) : Maitrise informatique
Localisation : Québec
Loisirs : bcp de choses
Date d'inscription : 04/02/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeDim 14 Jan - 13:47

ici on s'occupe pas de 0, ce qu'il faut regarder c'est m puisque f est définie sur R privé de m.
Ca marche pour m>0 comme m<0 comme m>pi. Smile
Revenir en haut Aller en bas
Mel 34
micro posteur
micro posteur
Mel 34


Nombre de messages : 14
Date d'inscription : 09/12/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeDim 14 Jan - 15:51

D'accord je comprends mieux. Merci
Revenir en haut Aller en bas
Mel 34
micro posteur
micro posteur
Mel 34


Nombre de messages : 14
Date d'inscription : 09/12/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeSam 20 Jan - 20:37

finalement mon exercice était pas totalement juste parce qu'il manqué quand m>0 et m<0 . Mais bon se n'est pas grave.
Revenir en haut Aller en bas
Shinichi
Adminimatheur
Adminimatheur
Shinichi


Masculin
Nombre de messages : 2038
Age : 37
Classe/Métier (si enseignant, précisez) : Maitrise informatique
Localisation : Québec
Loisirs : bcp de choses
Date d'inscription : 04/02/2006

dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitimeDim 21 Jan - 12:47

c'est bizare ça quand même...m'enfin ^^
Revenir en haut Aller en bas
Contenu sponsorisé





dérivées Empty
MessageSujet: Re: dérivées   dérivées Icon_minitime

Revenir en haut Aller en bas
 
dérivées
Revenir en haut 
Page 1 sur 1
 Sujets similaires
-
» Petit problème de tangente et dérivées
» Math : Les dérivées.
» fonctions dérivées compliquées
» Petit problème de dérivées
» DM de maths 1°ES sur les fonctions dérivées

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum Des Maths :: Coin lycée... :: 1ère-
Sauter vers: